
Amajor problem archaeologists often face
is how to explain spatial and temporal pat-
terns observed in the archaeological

record. Why is a particular artifact found in one

region but not in another region? Why does an arti-
fact type differ in shape or size between two sites?
Why do some artifacts change rapidly, whereas
others remain stable over long periods of time? In
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We present an agent-based computer simulation that extends a previous experimental simulation (Mesoudi and O’Brien
2008) of the cultural transmission of projectile-point technology in the prehistoric Great Basin, with participants replaced
with computer-generated agents. As in the experiment, individual learning is found to generate low correlations between
artifact attributes, whereas indirectly biased cultural transmission (copying the point design of the most successful hunter)
generates high correlations between artifact attributes. These results support the hypothesis that low attribute correlations
in prehistoric California resulted from individual learning, and high attribute correlations in prehistoric Nevada resulted
from indirectly biased cultural transmission. However, alternative modes of cultural transmission, including conformist
transmission and random copying, generated similarly high attribute correlations as indirect bias, suggesting that it may
be difficult to infer which transmission rule generated this archaeological pattern. On the other hand, indirect bias out-
performed all other cultural-transmission rules, lending plausibility to the original hypothesis. Importantly, this advantage
depends on the assumption of a multimodal adaptive landscape in which there are multiple locally optimal artifact designs.
Indeed, in unimodal fitness environments no cultural transmission rule outperformed individual learning, highlighting how
the shape of the adaptive landscape within which cultural evolution occurs can strongly influence the dynamics of cultural
transmission. Generally, experimental and computer simulations can be useful in answering questions that are difficult to
address with archaeological data, such as identifying the consequences of different modes of cultural transmission or explor-
ing the effect of different selective environments.

Presentamos una simulación por computadora basada en agentes que es una extensión del anterior experimento de simulación
(Mesoudi y O’Brien 2008) de transmisión cultural de la tecnología prehistórica de puntas de proyectil en la Gran Cuenca. En
esta simulación los participantes son reemplazados por agentes generados por computadora. Como en el experimento, el
aprendizaje individual genera bajas correlaciones entre los atributos de los artefactos, mientras que en una transmisión cul-
tural sesgada indirecta (copiar el diseño de la punta del cazador más exitoso) genera altas correlaciones entre los atributos
de los artefactos. Esto apoya la hipótesis de que bajas correlaciones en los atributos en la California prehistórica resultan del
aprendizaje individual, y que las altas correlaciones en los atributos en la Nevada prehistórica son consecuencia de la trans-
misión cultural sesgada indirecta. Sin embargo, modos alternativos de transmisión cultural como la transmisión conformista
y la imitación aleatoria generan correlaciones altas, en forma similar a las del sesgo indirecto, lo cual sugiere que tal vez sea
difícil inferir cuál regla de transmisión generó este patrón arqueológico. Por otro lado, el sesgo indirecto supera todas las
otras reglas de transmisión cultural, lo cual da verosimilitud a la hipótesis original. Es importante subrayar que esta ventaja
depende de suponer un entorno multimodal adaptativo, en el cual haya múltiples diseños de artefactos localmente óptimos.
En efecto, en un entorno de ajuste unimodal, ninguna regla de transmisión cultural superó al aprendizaje individual, desta-
cando así cómo la forma del entorno adaptativo dentro del cual la evolución cultural ocurre, puede influir fuertemente en la
dinámica de transmisión cultural. Por lo general, simulaciones experimentales y por computadora pueden ser útiles para con-
testar preguntas que son difíciles de abordar con información arqueológica, como identificación de las consecuencias de los
diferentes modos de transmisión cultural o de exploración de los efectos de los diferentes ambientes de selección.
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recent years, there has been a growing realization
that such patterns can be explained in terms of cul-
tural transmission (Bettinger and Eerkens 1999;
Eerkens and Lipo 2005, 2007; O’Brien and Lyman
2003a, 2003b; O’Brien et al. 2008; Shennan 2002),
which describes the details of how technological
skills, knowledge, and practices were passed from
individual to individual and from group to group
in prehistoric populations. For example, techno-
logical knowledge that is transmitted strictly from
father to son or mother to daughter will result in
artifact distributions and rates of change that are
different than those for which the associated tech-
nological knowledge is transmitted within a single
generation irrespective of kin relations. 

In many cases, this increased interest in using
cultural transmission to explain patterns in the
archaeological record has been associated with, or
directly facilitated by, the application of Darwin-
ian evolutionary theory to past cultural change (e.g.,
Barton and Clark 1997; Eerkens and Lipo 2005,
2007; Lipo et al. 1997, 2006; Lyman and O’Brien
1998; Neiman 1995; O’Brien 1996; O’Brien and
Lyman 2000, 2002; Shennan 2002; Shennan and
Wilkinson 2001). Archaeologists have found evo-
lutionary methods to be useful because transmis-
sion (or inheritance) is a central and fundamental
aspect of Darwinian evolution. Darwin himself
noted that “any variation which is not inherited is
unimportant for us” (1859:75), and over a century
later Mayr affirmed that “a comprehension of the
fundamental principles of inheritance is a prereq-
uisite for a full understanding of virtually all phe-
nomena in [all branches of] biology” (1982:
629–630). Just as biological inheritance is of fun-
damental importance in biological evolution, so
too is cultural inheritance (or cultural transmission)
of fundamental importance in cultural evolution:
“for a complete theory of cultural evolution, rules
of cultural transmission are essential” (Cavalli-
Sforza and Feldman 1981:54). In short, cultural
transmission and cultural evolution are inextrica-
bly linked concepts, for without cultural transmis-
sion there can be no cultural evolution. Darwinian
evolution provides a theoretical framework and set
of methodological tools that researchers can use to
study and understand cultural transmission. 

Other theoretical approaches within archaeol-
ogy (for example, chaîne opératoire [Bleed 2001])
similarly incorporate transmission or learning into

explanations of past cultural change, but only cul-
tural evolutionary theory brings with it an exten-
sive body of rigorous mathematical models of
cultural transmission that we believe have signif-
icant potential for archaeology. Past theoretical
work conducted within a cultural evolution frame-
work has examined the consequences of whether
cultural transmission is vertical (from parents),
oblique (from unrelated members of the parental
generation), or horizontal (from peers) (Boyd and
Richerson 1985; Cavalli-Sforza and Feldman
1981). Additional research has explored whether
people preferentially copy prestigious individuals
(Henrich and Gil White 2001) or conform to a
group majority (Henrich and Boyd 1998), and the
conditions under which people engage in cultural
transmission rather than relying on individual
learning (Aoki et al. 2005; Boyd and Richerson
1995). This work has shown through the use of for-
mal mathematical models that the details of cul-
tural transmission at the individual level—who
copies what, from whom, and when—can have
significant effects at the population level. Given
that archaeologists deal primarily with population-
level data that span long periods of time and were
generated by large numbers of people, evolution-
ary archaeologists have begun to use theoretical
distinctions that are concerned with cultural trans-
mission, such as those noted above, to explain spe-
cific archaeological phenomena (Bettinger and
Eerkens 1999; O’Brien and Lyman 2003a; see
below). 

However, one problem that arises when we try
to apply these theoretical distinctions to archaeo-
logical data is that archaeologists seldom have
access to accurate, individual-level data that allow
them to identify who has copied which trait, from
whom, and when. We can usually only infer such
details from messy, large-scale, population-level
data. One way of addressing this problem is to use
computer models to simulate different cultural-
transmission rules and match the resulting cultural
dynamics to archaeological data (e.g., Eerkens et
al. 2006). However, mathematical models are only
as good as their assumptions, in this case assump-
tions regarding people’s propensities to learn cul-
turally rather than individually and to engage in the
various forms of cultural transmission listed above.
We also need to supplement the mathematical and
computer models with experimental data from psy-
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chology in order to verify the assumptions and find-
ings of those theoretical models.

In this paper we argue that a combination of
computer simulation and psychological experiment
can significantly improve our understanding of spe-
cific patterns in the archaeological record. We pre-
sent details of an agent-based computer simulation
of a recent experiment (Mesoudi and O’Brien 2008)
that simulated the cultural transmission of Great
Basin projectile point technology, as explored by
Bettinger and Eerkens (1999). We stress that this
work is not intended to replace traditional archae-
ological methods; rather, we suggest that computer
and experimental simulations offer two potentially
useful tools that archaeologists can use to more
fully explain their data. Archaeological methods
provide real-world historical validity, experimen-
tal simulations provide essential psychological and
behavioral data, and computer models allow us to
systematically and rigorously explore a wide range
of conditions and assumptions. Each method
informs and enhances the others, to the mutual ben-
efit of all. In the following section we describe the
archaeological study that inspired the experimen-
tal and computer simulations; we then turn to the
details of those simulations.

The Archaeological Data

One of the best examples of the use of cultural-
transmission theory to explain archaeological data
is Bettinger and Eerkens’ (1997, 1999) study of
Great Basin projectile points. These stone points
were manufactured around A.D. 300–600 follow-
ing the replacement of the atlatl with the bow and
arrow. Bettinger and Eerkens (1999) observed that
points found in two regions of the Great Basin dif-
fer in the degree to which their attributes, such as
length, width, and weight, correlate with each other,
and they attributed these differences to the manner
in which prehistoric inhabitants of the two regions
acquired and transmitted projectile-point technol-
ogy. Specifically, the attributes of points found in
eastern California exhibited weak correlations with
each other, indicating diversity in point designs.
Bettinger and Eerkens (1999) argued that this was
because projectile technology in the region origi-
nally spread by means of guided variation (Boyd
and Richerson 1985), in which individuals acquire
a cultural trait and then modify it through individ-

ual trial and error. The latter component of indi-
vidual trial-and-error experimentation caused the
point attributes to vary independently, and thus cor-
relations between the attributes decreased. 

In contrast, projectile points of the same mate-
rial and from around the same period found in cen-
tral Nevada featured uniform designs with highly
correlated attributes. Bettinger and Eerkens (1999)
argued that those points originally spread as a result
of indirect bias (Boyd and Richerson 1985), in
which individuals copy wholesale the design of a
single successful model with no further modifica-
tion. With no individual trial and error and a single
model, point designs soon converged on the same
attributes, generating high correlations between
attributes. Bettinger and Eerkens (1999) argued
that differences between the regions at the indi-
vidual level (guided variation in California vs. indi-
rect bias in Nevada) generated differences between
regions at the population level (uncorrelated attrib-
utes in California vs. correlated attributes in
Nevada).

The Experimental Simulation

In a previous study (Mesoudi and O’Brien 2008),
we conducted an experimental simulation of the
archaeological pattern observed by Bettinger and
Eerkens (1999) in order to test whether guided vari-
ation and indirect bias really do generate the pro-
posed population-level patterns, and if so, under
what conditions. Groups of six participants (col-
lege students) played a computer game in which
each participant designed his or her own “virtual
projectile point” and then tested the design in a
“virtual hunting environment.” Participants entered
the values of five attributes of their projectile points
(Length,Width, Thickness, Shape, and Color). The
closer their point designs were to a hidden optimal
point design, the higher their feedback (given in
calories). 

Participants had 30 trials, or “hunts,” during
which to modify their point designs.1 These 30
hunts were divided into three phases. Following
Bettinger and Eerkens’ (1999) hypothesis, each of
the phases simulated a different transmission rule
that supposedly generated their Great Basin data
(see Mesoudi and O’Brien 2008:Table 2). During
Phase 1, the first hunt, participants could copy the
point design of one of six previous participants,
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given information about those previous partici-
pants’ relative success in the game. Phase 1 there-
fore simulated indirectly biased oblique cultural
transmission—copying the point design of a suc-
cessful member of the previous generation. Dur-
ing Phase 2, participants had 24 hunts to improve
their point designs through individual trial and
error, and were not allowed to view the point design
of any other participant. Phase 2 therefore simu-
lated guided variation—modifying a culturally
acquired point design according to individual trial-
and-error learning. During Phase 3, which con-
sisted of five hunts, participants could choose to
view and copy the point design of another mem-
ber of their group, again given information about
the other group members’ relative success. Phase
3 therefore simulated indirectly biased horizontal
(within-group) cultural transmission—copying the
point design of a successful member of the same
generation. If Bettinger and Eerkens’ (1999) con-
clusions were correct, and the low attribute corre-
lations observed in central Nevada resulted from
indirect bias, while the higher attribute correlations
in eastern California were a result of guided vari-
ation, then our results should reveal low correla-
tions between point attributes during Phase 2 and
higher correlations between point attributes during
Phases 1 and 3.

As shown in Table 1, this pattern was indeed
found, supporting Bettinger and Eerkens’s (1999)
hypothesis. Attribute correlations were highest dur-
ing Phase 1 (indirect bias), dropped during Phase

2 (guided variation), and increased again during
Phase 3 (indirect bias). Observing this pattern (indi-
rect bias = high correlations; guided variation =
low correlations) in the experiment, where we have
definitive records of our participants’ copying
behavior, increases our confidence that the same
pattern in the prehistoric Great Basin was gener-
ated by a similar cultural process (indirect bias in
Nevada = high correlations; guided variation in
California = low correlations).

The Agent-Based Computer Simulation

Although the experimental results of Mesoudi and
O’Brien (2008) are consistent with Bettinger and
Eerkens’s (1999) hypothesis, which increases our
confidence in the validity of their hypothesis, we
stress that experimental simulations of past cul-
tural change would never be able to provide a defin-
itive test of such a hypothesis. There will always
be limitations of experimental methods, such as the
many differences between our laboratory and the
prehistoric environment, or between our Western
college-student participants and prehistoric hunters.
We acknowledge that some of these limitations
may be unavoidable (Mesoudi 2007, 2008;
Mesoudi and O’Brien 2008), but we also stress that
experimental simulations can usefully complement
archaeological methods by allowing us to, for
example, re-run history, randomly assign control
and experimental groups, and generate complete,
uninterrupted, and unbiased datasets.
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Table 1. Correlation Coefficients for Experimental Point Attributes from Mesoudi and O’Brien (2008).

Width Thickness Shape Color

Length Hunt 1 (SL) .801*** .996*** 1.000*** .828***
Hunt 25 (IL) .272* -.004 .248 .187
Hunt 30 (SL) -.432 -.280 .730* .664*

Hunt 1 (SL) .752*** .856*** .994***
Width Hunt 25 (IL) -.014 .300 .350*

Hunt 30 (SL) -.515* .763* .342
Hunt 1 (SL) .895*** .706***

Thickness Hunt 25 (IL) .162 .190
Hunt 30 (SL) .867** .489

Hunt 1 (SL) .603***
Shape Hunt 25 (IL) .130

Hunt 30 (SL) .617*

Note: Correlations are Spearman’s rs. SL = Social Learning; IL = Individual Learning. Sample sizes: Hunts 1 and 25, n =
75; Hunt 30, n = 18.
*p < .05 
**p < .01
***p < .001. 
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In the following section, we hope to demon-
strate how the use of agent-based computer simu-
lations can overcome other limitations of
experimental simulations. For example, experi-
ments are often limited by the availability of par-
ticipants and time. This problem is especially
prominent when simulating large-scale,
population-level archaeological processes, which
may have originally involved many hundreds or
thousands of people over multiple generations and
hundreds of years. These problems can be partially
overcome by using agent-based computer models
to extend experiments and draw wider conclusions.
Agent-based models (Axelrod 1997; Epstein and
Axtell 1996; Kohler and Gumerman 2000) involve
simulating in a computer program a population of
virtual “agents,” or “individuals,” each with spec-
ified characteristics and behaviors, and allowing the
agents to interact, learn, and evolve over time. Here
we present an agent-based model of the experi-
ment reported in Mesoudi and O’Brien (2008),
with agents representing participants and per-
forming the same experimental task as the actual
participants.2 To maximize the validity of the
model, we used data from the participants to inform
the behavior of the agents. We first verified that the
model successfully re-created the data generated
by the participants under identical conditions. We

then systematically extended parameters such as
sample size, group size, and number of trials/gen-
eration. Finally, we simulated alternative cultural-
transmission strategies and explored the effect of
changing the shape of the selective environment. 

Model Description

The design of the model was identical in almost
every respect to the experiment described in
Mesoudi and O’Brien (2008), with computer-
generated agents in groups of six designing pro-
jectile points. (Indeed, the agent-based model was
carried out using exactly the same C++ code that
was used to run the experiment, except with input
coming from additional code rather than from
human participants.) Following the same proce-
dure as the experimental participants, the agents
engaged in 30 hunts divided into three phases of
learning, each simulating different learning rules.
Figure 1 provides a flowchart describing the behav-
ior of the agents. Phase 1 simulated indirectly
biased oblique cultural transmission, where agents
automatically copied the point attributes of the most
successful pretest participant from the experiment,
just as most of the experimental participants did
during their Phase 1. Phase 2 again lasted 24 hunts
and simulated guided variation, during which
agents followed the individual-learning strategy
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Figure 1. Flow chart showing the design of the agent-based simulation.
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defined below. Finally, Phase 3 lasted five hunts and
simulated horizontal cultural transmission, where
agents copied the point design of another agent in
their group according to one of the four cultural-
transmission strategies defined below. As in the
experiment, we also ran individual-learning con-
trol agents who did not copy other agents during
Phase 3.

For each of the five types of agents (four cultural-
transmission strategies plus one individual-learning
group), 50 six-agent groups were simulated. The
results discussed in the sections below are the aver-
ages from all 50 groups. The different cultural-
transmission conditions were independent,
meaning that agents interacted only with other
agents of the same cultural-transmission strategy,
and the results of each group were compared sta-
tistically rather than allowing the agent types to
compete directly. As in the experiment, we used
three different selective environments (three dif-
ferent sets of optimal attribute values). Each group
of agents was assigned randomly to one of the three
environments. Contrary to the conditions of the
experiment, agents modified only the three con-
tinuous attributes (Length, Width, and Thickness)
and not the two discrete attributes (Shape and
Color). This made the individual-learning strategy
easier to define and seemed to reflect the partici-
pants’ behavior given that they modified the con-
tinuous attributes more frequently than the discrete
attributes. The following sections outline the main
research questions that were addressed and our the-
oretical predictions.

Individual-Learning Strategy 

To maximize the validity of the model, we based
the individual-learning behavior of our agents as
much as possible on the behavior of the participants
from the experiment (reported in Mesoudi and
O’Brien [2008]). In the experiment, we defined a
participant’s individual-learning strategy using two
parameters. The first, d, was defined as the num-
ber of continuous attributes changed during a hunt
(where 0 ≤ d ≤ 5). The second, c, was defined as
the mean magnitude of the change in the three con-
tinuous attributes (Length, Width, and Thickness)
during a hunt (where 0 ≤ c ≤ 99). In the experiment
we found that our participants tended to change one
attribute at a time (d = 1) and by a magnitude of
five units (c = 5). Following these results, we had

the agents in the model use an identical strategy:
during each hunt they changed one of the three
attributes (d = 1) by a magnitude of five units (c =
5). (Interestingly, additional simulations not pre-
sented here indicated that these values of d and c
were in fact optimal, meaning that they gave the
highest mean fitness over the 30 hunts.)

On each hunt, an agent selected one of the three
attributes at random, and then either increased or
decreased the attribute by c. Agents initially
selected a direction (increase or decrease) at ran-
dom for each attribute. If this modification resulted
in an increase in score compared to the previous
hunt, then the agent continued with that direction
for that attribute. If the score decreased, then the
agent changed direction. This behavior resembles
reinforcement learning or instrumental condition-
ing (Skinner 1938), or the classic “win-stay, lose-
shift” learning strategy (Nowak and Sigmund
1993), and causes the agent to gradually converge
on the nearest optimum and oscillate around that
optimum (with a radius determined by the magni-
tude of c). Certainly, more complex and perhaps
realistic individual-learning strategies are possible,
involving greater modification (d > 1, c > 5) dur-
ing early hunts/low scores and less modification (c
< 5) during later hunts/high scores (as was found
for some participants in the experiment).  Strate-
gies that use Bayesian learning rules (Oaksford and
Chater 2001), or strategies that evolve (Holland
1992), are also viable options. On grounds of par-
simony, however, there is no reason to invoke these
more complex learning strategies if the simple
reinforcement-learning strategy at constant values
of d and c successfully re-creates the participants’
behavior. First, however, we must evaluate whether
this is true.

In Phase 1, all agents started with the same val-
ues of Length, Width, and Thickness as the most
successful pretest participant, as presented to the
experimental participants in their Hunt 1. We then
simulated, in Hunt 2, two different learning strate-
gies, “Keep” and “Discard.”Agents employing the
“Keep” strategy kept the values of Length, Width,
and Thickness that they inherited from the most
successful pretest participant. Agents employing
the “Discard” strategy discarded those inherited
values and began their individual learning with ran-
domly generated values of each attribute. We
defined these strategies because, in the experiment,
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participants experienced a different selective envi-
ronment from the pretest participants (as did agents
in the model). The point design that they inherited
from the most successful pretest model therefore
did not necessarily yield a high score in the partic-
ipants’ environment, so the “Discard” strategy
should have been more effective. However, we did
not inform the participants that the environment had
changed, so some participants may have followed
the “Keep” strategy. We were therefore interested
in whether the results from the experiment more
closely resembled the “Keep” or the “Discard”
strategy, and we addressed this using the model. 

Cultural-Transmission Strategy

In the final five hunts (Phase 3), agents in cultural-
transmission conditions copied the design of other
agents in their group according to their cultural-
transmission strategy (Laland 2004). The first two
strategies we call “model-based strategies” and
involve copying the entire point design of a single
model. The “copy-the-successful” strategy resem-
bles the behavior of the experimental participants,
where agents adopt all of the point-design attrib-
utes of the single agent in their group with the high-
est cumulative score at Hunt 25. As noted above,
this strategy resembles Boyd and Richerson’s
(1985:243) indirect bias, with hunting success as
the indicator trait.3 “Copy-at-random” agents select
another agent at random in their group and copy
that agent’s entire design. This random copying
has been explored in an archaeological context by
Neiman (1995) and Bentley and Shennan (2003).

The other two strategies we call “trait-based
strategies,” where agents use information from mul-
tiple models when copying each trait. “Copy-the-
average” agents adopt the mean Length, mean
Width, and mean Thickness of all agents’points in
their group, including their own. This strategy
resembles Boyd and Richerson’s (1985:72) “blend-
ing transmission.” “Copy-the-majority” agents
adopt the modal Length, modal Width, and modal
Thickness of all agents’ points in their group,
including their own, where the 1–100 scale for each
dimension is divided into 10 intervals of 10 units
and the agents adopt the midpoint of the modal
interval. This strategy resembles Boyd and Richer-
son’s (1985:205) “positive frequency-dependent,”
or “conformist” transmission. Note that the latter
two trait-based strategies can be considered

(although were not assumed in the model to be)
cognitively more complex than the two model-
based strategies, given that they require tallying or
averaging across the entire group separately for
each attribute. 

Past theoretical work provides some predictions
regarding these cultural-transmission strategies
(Boyd and Richerson 1985; Laland 2004). We
might predict that any form of cultural transmis-
sion should reduce within-group variation relative
to individual learning (Boyd and Richerson 1985;
Eerkens and Lipo 2005), not just the copy-the-
successful strategy (indirect bias) as found in the
experiment. We might also expect that the con-
formist copy-the-majority strategy should be par-
ticularly effective, given analytical results
suggesting that conformity is adaptive under a wide
range of conditions (Henrich and Boyd 1998).

Shape of the Adaptive Landscape

In the experiment the participants could modify
five different point attributes: three continuous
attributes (Length, Width, and Thickness), each
ranging from 1–100 arbitrary units, and two dis-
crete attributes (Shape and Color), each taking one
of four values. The overall fitness score was the sum
of each of these attributes. The continuous attrib-
utes had bimodal fitness functions, meaning that
each attribute had two optimal values. One was a
global optimum, giving the maximum fitness from
that attribute, and the other was a local optimum,
giving two-thirds the fitness of the global optimum.
The farther from each of these fitness “peaks,” the
lower the fitness feedback (see Mesoudi and
O’Brien [2008] for fitness equations). These three
bimodal fitness functions, when combined into a
single feedback score, yield an adaptive landscape
with multiple peaks of varying height, where height
in the landscape represents fitness of the design. We
argued (Mesoudi and O’Brien 2008) that variation
was maintained in the experiment during the Phase
2 guided variation because participants found them-
selves, purely by chance, at different locally opti-
mal peaks on the fitness landscape. Any slight
deviation away from this locally optimal peak
decreased the overall feedback, giving the illusion
that the participant was at the best possible point
design, even though there were other, higher peaks
to be found across valleys in the adaptive landscape
(participants were not informed of the bimodal fit-
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ness functions and thus did not know that there
were multiple locally optimal point designs).

Although we argued that the multimodal adap-
tive landscape was responsible for this maintenance
of variation, we did not run an alternative experi-
mental condition in which the adaptive landscape
was unimodal, that is, where there was a single
peak in the adaptive landscape, with no globally
suboptimal peaks on which to get stuck. This was
addressed using the model, in an alternative con-
dition assuming a unimodal adaptive landscape.
We might expect that a unimodal adaptive land-
scape will reduce the variation during the guided
variation of Phase 2, given that all agents can con-
verge on the single fitness peak. We also predict
that this will be more likely to occur with increas-
ing numbers of hunts, allowing for greater conver-
gence on the single peak. 

Simulation Results

Individual-Learning Strategy

An important test of the agent-based simulation is
whether it can generate the same results using
computer-generated agents as did the experiment
using real participants, and, by extension, the
archaeological data. Recall that we employed two
alternative assumptions in the model regarding the
starting conditions of the individual learning in
Phase 2. In the “Keep” condition, agents kept the
point design they inherited from Phase 1. In the
“Discard” condition, the agents discarded this point
design and started off Phase 2 with random point
attributes. By looking at which of these conditions,
if either, generates similar results as the experi-
ment, shown in Figure 2a, we can ascertain the
degree to which the participants were sticking with
the point design that they copied during Phase 1 or
whether they discarded this design. 

The results of the model simulations supported
the latter and showed that the “Discard” strategy
successfully re-created the pattern of results
observed in the experiment. In the “Keep” condi-
tion (Figure 2b), as all agents started at the same
place in the point-design space, they tended to con-
verge on the same optima, and thus there was lit-
tle benefit to the copy-the-successful strategy
relative to the individual controls (F[1,598] = .363,
ns),4 contradicting the experimental findings. The

“Keep” condition also generated low within-group
variation during Phase 2, with a within-group coef-
ficient of variation (WGCV) of approximately .15,
which does not match the WGCV of around .5
found in Phase 2 of the experiment.

The “Discard” condition (Figure 2c), where
agents in the model took random values of Length,
Width, and Thickness at the start of Phase 2, more
accurately replicated the advantage shown by the
participants who engaged in indirectly biased cul-
tural transmission, with significantly higher scores
over the last five hunts than individual-learning
agents (F[1,598] = 53.58, p < .001). Within-group
variation also matched the experimental results,
with within-group variation during Phase 2 match-
ing between-group variation at a magnitude of
approximately .5. This suggests that the experi-
mental participants were effectively discarding the
low-scoring point designs they inherited and start-
ing from scratch at Hunt 2. This makes sense given
that the environment experienced by the agent/par-
ticipant was different than the environment expe-
rienced by the pretest model. We therefore conclude
that the reinforcement-learning strategy with the
“Discard” assumption accurately captures the
behavior of the participants, given the similarity
between the results of those agents (Figure 2c) and
the experimental participants (Figure 2a). The fol-
lowing results all assume the “Discard” individual-
learning strategy.

Cultural-Transmission Strategy 

Table 2 shows the correlations among the three
continuous attributes at Hunt 25 (following Phase
2) and at Hunt 30 (following Phase 3) for each of
the four cultural-transmission strategies plus the
individual-learning controls. As expected, no sig-
nificant correlations occurred at Hunt 25 for any
strategy, following individual-learning and before
the social-learning strategies were implemented.
The individual controls also showed low and non-
significant correlations at Hunt 30. Hence, indi-
vidual learning was universally associated with
low, nonsignificant correlations between point
attributes, just as Bettinger and Eerkens (1999) and
the results of the experiment suggested. Addition-
ally, the copy-the-successful agents showed large
and significant correlations following cultural trans-
mission at Hunt 30 which were consistent with the
results of the experiment. Furthermore, “copy-at-
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random,” the other model-based strategy, also
demonstrated large and significant correlations at
Hunt 30. “Copy-the-average” and “copy-the-
majority,” the two trait-based strategies, showed a
less-marked increase in correlations at Hunt 30,
although all but one comparison was significant.
The different cultural-transmission strategies also
produced similar decreases in within-group varia-
tion (Figure 3a), and in each case within-group
variation dropped to zero during Phase 3.

From these findings we can conclude that (1)
any form of within-group cultural transmission will

reduce within-group variation and increase corre-
lations between attributes, and (2) model-based
cultural-transmission strategies, where the entire
artifact is copied from a single model, generally
give higher correlations than trait-based strategies,
where multiple models are used for each trait. The
first conclusion can be used to distinguish between
cultural transmission (of any form) and individual
learning in the archaeological record, and further
supports the theories and conclusions Bettinger and
Eerkens (1999) and Eerkens and Lipo (2005) pre-
sented in their research. However, it might be dif-
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Figure 2. Mean score and coefficients of variation for (a) the experiment (Mesoudi and O’Brien 2008), (b) “copy-the-suc-
cessful” agents with the “Keep” strategy, and (c) “copy-the-successful” agents with the “Discard” strategy.
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ficult to use correlations and coefficients of varia-
tion to distinguish between different cultural-
transmission strategies in the archaeological record.
We might use the second rule to distinguish
between model-based and trait-based cultural-
transmission strategies, although given the noise
inherent in archaeological data, it may be difficult
to detect such small differences in correlation mag-
nitudes. 

An indirect way of inferring which cultural-
transmission strategy was used in the past might be
to compare the relative efficacy of each strategy in
terms of the mean fitness payoff to each agent, and
infer that the most-successful strategy was more
likely to have been employed by prehistoric peo-
ple. This test is undoubtedly indirect and rests on
several large assumptions. Nevertheless, given that
we can never directly compare the fitness conse-
quences of different cultural-transmission strategies
in prehistoric populations, experimental and com-
puter simulations are probably the only way to
address this question. 

Figure 3b shows the mean score per agent at
each hunt for each cultural-transmission strategy,
as well as the individual-learning controls. The dif-
ferent strategies were each compared statistically
with the individual-learning control agents. “Copy-
the-successful” agents showed significantly higher
scores over the last five hunts than individual-
learning agents (F[1,598] = 53.58, p < .001).
“Copy-at-random” (F[1,598] = .31, ns) and copy-
the-majority (F[1,598] = 3.15, ns) agents both
showed no significant difference from individual
learning, whereas “copy-the-average” agents
(F[1,598] = 26.99, p < .001) performed signifi-
cantly worse than individual learning controls. This

striking advantage of the “copy-the-successful”
strategy leads us to speculate that although the pat-
tern of correlations observed by Bettinger and
Eerkens (1999) could plausibly have been gener-
ated by any form of cultural transmission, it was
most likely to have been indirectly biased cultural
transmission rather than conformist, averaging, or
random cultural transmission.

Shape of the Adaptive Landscape

We argued (Mesoudi and O’Brien 2008) that the
advantage of indirectly biased cultural transmission
in the experiment was due at least in part to the mul-
timodal adaptive landscape, because participants
who get stuck on low-fitness peaks can jump to
higher peaks in the adaptive landscape by copying
fellow group members who happen to have found
those higher peaks. One prediction that follows
from this is that larger group sizes should yield
higher scores because with more agents in a group,
it is more likely that one of those group members
will arrive at the best possible point design, where
all of the point attributes are at global optima.
Although the experiment was limited in terms of
the number of participants we could plausibly run
at any one time, with the agent-based simulation
we can simulate what might happen with larger
groups. Figure 4a confirms that mean score
increases with group size for the “copy-the-
successful” cultural-transmission agents. “Copy-
the-successful” was the only strategy to exhibit this
effect of group size. Figure 4b shows that mean
score at Hunt 30 rapidly increases with group size
until group size reaches approximately n = 20, at
which point further increases in group size have lit-
tle effect. 
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Table 2. Correlation Coefficients for Model Point Attributes, by Social-Learning Strategy.

Copy the Successful Copy at Random Copy the Average

L x W L x T W x T L x W L x T W x T L x W L x T W x T

Hunt 25 .026 -.108 -.097 .159 .008 -.114 -.120 -.022 -.198
Hunt 30 .460*** -.564*** -.706*** .482*** -.599*** -.682*** .267* -.248* -.498***

Copy the Majority Individual Learning

L x W L x T W x T L x W L x T W x T
Hunt 25 -.125 -.035 .132 -.025 -.203 -.095
Hunt 30 -.489*** -.309* .069 -.101 -.073 -.037

Note: L = Length; W = Width; T = Thickness. Correlations are Spearman’s rs.
*p < .05 
**p < .01
***p < .001. 
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As well as manipulating group size, we can also
directly simulate learning in a unimodal adaptive
landscape, where each attribute has a single nor-
mally distributed optimal value. Figure 5a shows
that over extended numbers of hunts, individual-
learning controls in a unimodal adaptive landscape
do better than individual-learning controls in a mul-
timodal adaptive landscape. This is because, given
enough time/hunts, individual-learning agents will
eventually converge on the single optimal point
design, whereas in a multimodal adaptive land-
scape many will get stuck on globally nonoptimal
fitness peaks. Figure 5b shows that individual-
learning agents in a unimodal adaptive landscape

also exhibit low within-group variation after
extended numbers of hunts. The conclusions drawn
in the previous section regarding the signatures of
different forms of learning in the archaeological
record therefore apply only if the selective envi-
ronment in which that learning takes place is mul-
timodal in shape, that is, there are several stable
artifact designs, each with a different fitness. In a
unimodal adaptive landscape, individual learners
will eventually perform as well as those using indi-
rectly biased cultural transmission (and perhaps
outperform them5), as well as exhibit similarly low
within-group variation. 

We can also explain the advantage of the

Mesoudi & O’Brien] CULUTURAL TRANSMISSION OF PROJECTILE POINT TECHNOLOGY 637

Figure 3. (a) Within-group coefficient of variation (WGCV) and (b) mean score for agents engaged in different cultural-
transmission strategies.
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“copy-the-successful” agents over the other
cultural-transmission strategies (shown in Fig-
ure 3b) in terms of the shape of the adaptive land-
scape. “Copy-the-average” agents did poorly in
the multimodal landscape because if half the
group is at the global optimum and the other half
is at the local optimum, then the average will be
in a valley between these two fitness peaks, yield-
ing a low score. “Copy-at-random” and “copy-
the-majority” agents effectively choose one peak
at random on which to converge, yielding a mean
score equivalent to that for individual learning.
Changing the selective environment so that each
attribute had a unimodal rather than a bimodal
fitness function, yielding a single globally opti-

mal peak, improved the “copy-the-majority”
strategy, as shown in Figure 5c. In this environ-
ment, “copy-the-successful” (F[1,598] = 54.99,
p < .001) and “copy-the-majority” (F[1,598] =
6.21, p < .05) agents both have significantly
greater scores than individual-learning controls,
although “copy-the-successful” agents still sig-
nificantly outperform “copy-the-majority”
agents (F[1,598] = 72.88, p < .001). “Copy-at-
random” (F[1,598] = 4.60, p < .05) and “copy-
the-average” (F[1,598] = 6.90, p < .01) agents
both perform worse than individual learners
(although individual-learning controls eventu-
ally outperform all of these strategies given
enough hunts [see note 5]).
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Figure 4. (a) Mean score for “copy-the-successful” agents at different group sizes over all hunts and (b) the relationship
between mean score at the last hunt and group size.
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Figure 5. Comparison of a unimodal and a multimodal adaptive landscape on (a) mean score, (b) within-group variation
for individual-learning agents over an extended number of hunts, and (c) comparison of different cultural-transmission
strategies on a unimodal adaptive landscape. 
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Discussion

The aim of the present study was to develop an
agent-based simulation of a previous experiment
(Mesoudi and O’Brien 2008) that had simulated the
cultural transmission of prehistoric Great Basin
projectile-point technology. In both the experiment
and the model, participants/agents designed pro-
jectile points and tested them in a virtual hunting
environment, with different phases of the experi-
ment simulating different learning rules. Phase 1
simulated indirectly biased cultural transmission
from a pretest group of participants, Phase 2 sim-
ulated guided variation or individual learning, and
Phase 3 simulated indirectly biased horizontal (or
within-group) cultural transmission. In the exper-
iment, and under certain conditions of the model,
we re-created the patterns of attribute correlations
that Bettinger and Eerkens (1999) observed in the
Great Basin archaeological record, with indirect
bias generating high correlations between attributes
and guided variation generating low correlations.
The agent-based simulation did more than replicate
our findings in the experiment, however. It also
permitted us to explore a much wider range of con-
ditions and assumptions than was possible in the
experiment, such as increasing the number of par-
ticipants or trials, comparing alternative cultural-
transmission strategies, and changing the shape of
the selective environment. 

We summarize the findings of the model in the
following manner. First, we confirmed that cultural
transmission acts to increase correlations between
artifact attributes and reduce within-group varia-
tion, relative to individual learning. This supports
Bettinger and Eerkens’(1999) argument to the same
effect with respect to Great Basin projectile point
designs, as well as Eerkens and Lipo’s (2005) more
general model of trait variation. However, whereas
Bettinger and Eerkens assumed that this cultural
transmission was indirectly biased (that people
were copying the most successful group member’s
point design), here we showed that alternative
modes of cultural transmission (copying the major-
ity, copying the group average, and copying at ran-
dom) generated similarly high correlations between
attributes and similarly reduced within-group vari-
ation. We did find that “model-based” strategies,
where the entire artifact of a single model is copied,
generate higher correlations between attributes than

“trait-based” strategies, where traits are separately
averaged across multiple models. It thus might be
possible to use these signatures to distinguish
between these two strategies in the archaeological
record. Generally, however, given the noise inher-
ent in most archaeological datasets, we suspect that
it will be difficult in practice to distinguish between
different forms of cultural transmission in the
archaeological record when relying solely on
attribute correlations or measures of variation. 

Second, we found that the “copy-the-
successful” cultural-transmission strategy, which is
analogous to indirectly biased cultural transmis-
sion, significantly outperformed the other cultural-
transmission strategies and indeed was the only
strategy to outperform individual learning. This
advantage was even more pronounced in larger
groups of around 50 individuals, which have been
typical throughout much of human evolution (Dun-
bar 1995) and are likely to be more representative
of the prehistoric societies that generate archaeo-
logical data than the groups of six employed in the
experiment. If we are willing to assume that pre-
historic people were behaving in an adaptive man-
ner, we might infer that the high inter-attribute
correlations and low within-group variation Bet-
tinger and Eerkens (1999) found in the central
Nevada region of the prehistoric Great Basin was
indeed the result of indirect bias, as they argued.
Further, this finding that the indirect-bias / “copy-
the-successful” strategy outperforms all other
cultural-transmission strategies is important
because it qualifies previous mathematical models
that suggest conformist cultural transmission is
favored under a wide range of conditions (Henrich
and Boyd 1998), as well as previous analyses that
have found evidence of frequency-dependent (con-
formist or anti-conformist) cultural transmission
in the archaeological record (Kohler et al. 2004;
Shennan and Wilkinson 2001). 

However, we should note that in reality people
probably did not (and do not) engage exclusively in
a single cultural-transmission rule as did our agents.
It is more likely that people flexibly switch between
different learning strategies (individual learning,
“copy-the-successful,” “copy-the-majority”)
depending on circumstances or experience. For
example, novices or apprentices might preferen-
tially follow a “copy-the-successful” strategy in
order to quickly and effectively learn a new tech-
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nology, whereas experts might adopt individual
learning in order to refine their existing skills.
Indeed, previous cultural evolutionary models
(Boyd and Richerson 1995) and experiments
(Kameda and Nakanishi 2003) have found this
kind of flexible switching of learning strategies to
be highly adaptive. Further experiments and mod-
els might explore optimal combinations of learn-
ing strategies for different tasks and circumstances.

Third, we found that all of these findings are
highly dependent on the assumption of a multi-
modal adaptive landscape, in which multiple, sta-
ble artifact designs coexist, each of which yields
a different fitness. In a unimodal adaptive land-
scape, individual learning eventually performs
equally as well as or better than every cultural-
transmission strategy, and individual learning gen-
erates the same low within-group variation as does
cultural transmission. This is because individual
learning will eventually converge on the single
optimal “peak” in the adaptive landscape. In con-
trast, in a multimodal adaptive landscape, indi-
vidual learners get stuck on locally optimal but
globally suboptimal peaks, whereas “copy-the-
successful” agents can jump to peaks of higher fit-
ness found by other individuals.

This might explain the discrepancy between
our findings and the previous analyses noted above
(e.g., Henrich and Boyd 1998), given that such
analyses commonly assume dichotomous traits
and fitness functions—that is, behavior can take
one of two discrete values, one of which has a
higher fitness than the other. Generally, the find-
ings of the model reinforce our speculation in
Mesoudi and O’Brien (2008) that the shape of the
adaptive landscape will strongly influence the
dynamics of cultural transmission. Although there
is little specific empirical evidence in this regard,
we can speculate that the actual selective envi-
ronments of cultural traits are more likely to resem-
ble multimodal than unimodal or discrete adaptive
landscapes (Bettinger and Baumhoff 1982; Boyd
and Richerson 1992; Mesoudi and O’Brien 2008).
For example, Cheshier and Kelly (2006) found
experimental evidence for tradeoffs in projectile-
point designs with respect to different functions,
such as accuracy and killing power. For example,
they determined that “thin, narrow points have
greater penetrating power, but wide, thick points
create a larger wound that bleeds more easily”

(Cheshier and Kelly 2006:353). Hence, we might
expect a bimodal fitness function, one peak max-
imizing penetrating power and the other maxi-
mizing bleeding, with intermediate forms showing
low fitness.

Just as population-genetic models suggest that
multimodal adaptive landscapes have been impor-
tant in biological evolution by guiding historical tra-
jectories of biological lineages (Arnold et al. 2001;
Lande 1986; Simpson 1944), multimodal land-
scapes have also likely affected the historical tra-
jectories of cultural artifact lineages. We might look
for evidence of this in the archaeological record,
perhaps by looking for artifacts or artifact traits
that, across a population, converge on a small num-
ber of stable forms, which we can infer is due to
individual learning. Then, if the artifact or artifact
traits abruptly take on a new form, or one of the
previous forms, we can infer that this change results
from indirectly biased cultural transmission to a
new, higher peak in the adaptive landscape. Indeed,
the transition from the atlatl to the bow and arrow
in the Great Basin might be one example of this.
Evidence of migration or intergroup contact at
around the time of the shift to a new peak might
also be expected.

However, we do not wish to argue that all cul-
tural evolution takes place on multimodal adaptive
landscapes. Rather, our point is that only by for-
mally testing assumptions regarding selective envi-
ronments with experimental and computer
simulations, as was done here, can we make quan-
titative predictions that can then be tested with
archaeological data. Given that it is extremely dif-
ficult to identify the shape of the adaptive landscape
in prehistoric environments, experiments and mod-
els may, in many cases, be the only way of testing
such assumptions. More specifically, our discussion
underscores the utility of agent-based computer
simulations by demonstrating how they give
researchers the ability to escape the constraints
imposed by experimental setups and thoroughly
explore a set of assumptions. As we showed, the
use of data from our initial experiment helps to
maximize the validity of models, preventing them
from becoming too abstract. We believe that exper-
imental simulations, when supplemented with
agent-based models as described here, can be use-
ful tools for simulating aspects of prehistory that
are difficult to observe directly in the archaeolog-
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ical record, such as microevolutionary cultural-
transmission rules or the shape of adaptive land-
scapes on which cultural traits evolve. This
interplay among historical data, experimental sim-
ulations, theoretical predictions, and computer sim-
ulations is facilitated by a multidisciplinary
evolutionary framework for the study of culture
(Mesoudi et al. 2004, 2006; Richerson and Boyd
2005), which naturally emphasizes the importance
of individual-level details of transmission in gen-
erating population-level patterns, such as those we
observe in the archaeological record.
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Notes

1. In fact, participants in Mesoudi and O’Brien (2008)
played three seasons of 30 hunts each. The three seasons had
different optimal point designs, and during the last season
participants had to pay a cost to modify their points, simulat-
ing costly individual learning. The model presented here sim-
ulated only a single season of hunting with no cost.

2. Our use of agent-based models is slightly different
from their more common use in archaeology, which is to
directly simulate prehistoric people or households interacting
in an explicit spatial environment (e.g., Kohler et al. 2000). In
our model, we instead simulate participants in an experiment
that itself was intended to simulate prehistoric cultural
change, rather than simulating that prehistoric change
directly. We believe this added layer of psychological reality
adds a certain degree of validity to our agent-based model,
although we fully support the more conventional and direct
use. Indeed, the two uses are probably quite complementary.

3. Note that this strategy is copy-the-successful-
individual, rather than copy-the-successful-behavior. In other
words, agents are selecting successful individuals to copy and
not (necessarily) successful behaviors. The latter, copying
successful behaviors, would resemble Boyd and Richerson’s
(1985) direct bias and would involve testing a model’s behav-
ior to assess its effectiveness before adoption of that behavior.
Neither the participants in Mesoudi and O’Brien’s (2008)
experiment nor agents here could test point designs before
choosing whether to adopt them. In practice, however, these
strategies are likely to have very similar consequences: indi-
viduals are successful because they exhibit successful behav-
iors, so copying successful individuals will usually result in
copying successful behaviors.
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4. All statistical tests are mixed ANOVAs on the scores
from the last five hunts, with hunt as a within-group factor
and strategy as a between-group factor.

5. Several factors determine whether individual learners
will outperform copy-the-successful agents in a unimodal
adaptive landscape. Primary among these is the length of the
individual learning period (Phase 2). If Phase 2 is too short,
then it is unlikely that any agent in a group of “copy-the-
successful” agents will have found the optimal design. Given
that we assume that “copy-the-successful” agents during
Phase 3 no longer engage in individual learning, “copy-the-
successful” agents will not be able to improve their points
further, whereas individual learners can continue to improve
their points. Of course, it is unrealistic to assume that agents
go through one relatively short period exclusively engaging in
individual learning (Phase 2) and then another period exclu-
sively engaging in cultural transmission (Phase 3). To more

accurately explore the relative efficacy of individual learning
and social cultural transmission in a unimodal adaptive land-
scape, we might allow agents to “choose” whether to engage
in individual learning or cultural transmission during every
hunt. This likely would result in information producers (indi-
vidual learners) and information scroungers (social learners)
coexisting at some fixed frequency (Kameda and Nakanishi
2002, 2003). The general point we draw from our current
simulations, however, still holds: “copy-the-successful”
always outperforms individual learning in a multimodal
adaptive landscape, whereas individual learning may some-
times outperform “copy-the-successful” in a unimodal adap-
tive landscape. 
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